If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+7w-5=0
a = 2; b = 7; c = -5;
Δ = b2-4ac
Δ = 72-4·2·(-5)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{89}}{2*2}=\frac{-7-\sqrt{89}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{89}}{2*2}=\frac{-7+\sqrt{89}}{4} $
| 5x+2=27+3x-1 | | 1=-6k+16+3k | | 6y-3=3y-15 | | 25n-36=0 | | 2x+1+(x-4)=90 | | -6p+8p-4p=-16 | | 6x-5=8x-1+ | | 2(5x+4)=+3(2x-3) | | 39=27+y | | X^2+2(m-1)X+(m+5)=0 | | C(x)=20,000+4.50x | | 32+z=62 | | 47-(88-x)-5=9 | | 2-(-6x+3=-(3x+2) | | 1-5x+4x=7 | | 2x-4(x-1=10 | | 6(x+10)=2x+40 | | 7u+4=-10 | | -2(u+9)=-6 | | -16=-4y-12 | | -3=u/6+2 | | x+50°+60°=180 | | (2/3^x)=27/8 | | 4-6y=-20 | | 2/3x=10x15 | | (2x-1)/(x-2)=3/2 | | 10x-1=7+8x | | 3aa=-4 | | 11y-36=36 | | 198=-4x+2(-6x+)3 | | 8^x/2^x^2=1 | | 8^x/2^x^2^2=1 |